
A. Charbonnel	LATITUDE PAR LA MÉRIDIENNE	V1.1 – 02/22
NAV-ASTRO	PRINCIPE DE LA LATITUDE PAR LA MÉRIDIENNE	1/2

FORMULE AU PASSAGE AU MERIDIEN SUPERIEUR

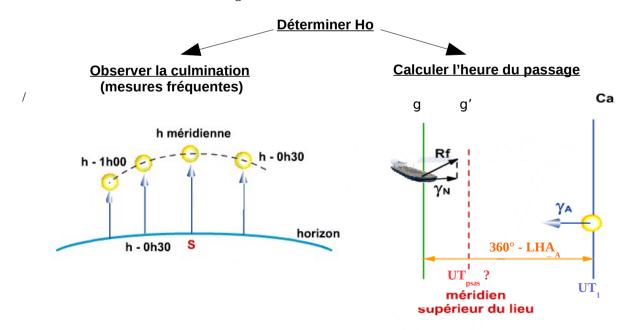
Définitions

La méridienne est l'instant où un astre passe exactement au-dessus du méridien de l'observateur. Il atteint alors sa position la plus haute dans le ciel. On dit qu'il "culmine" (Ho est maximal).

Le Soleil passe à la méridienne vers midi local (LAN = Local Apparent noon).

Latitude à la méridienne

Le triangle de position se simplifie puisque le méridien de l'astre et de l'observateur se confondent.


A la méridienne :

$$|\varphi| = (90 - h_o) \pm D$$

- Ajouter D si φ_e et D sont de même signe
- Retrancher D si ϕ_e et D sont de signe contraire.

Quand mesurer Ho?

Pour déterminer Ho a la méridienne, deux solutions, soit observer la culmination en faisant des observations fréquentes, soit calculer l'heure de passage au méridien, l'heure à laquelle le Soleil et le navire seront sur le même méridien g'.


A. Charbonnel	LATITUDE PAR LA MÉRIDIENNE	V1.1 – 02/22
NAV-ASTRO	PRINCIPE DE LA LATITUDE PAR LA MÉRIDIENNE	2/2

Comment calculer l'heure du passage au méridien

Soient:

- UT1/ZT1 l'instant ou l'on connaît la position du navire,
- γ_A est la vitesse en longitude de l'astre
- γ_N est la vitesse en longitude du navire
- P l'angle au pôle
- l'heure de passage au méridien est défini par :

$$\begin{split} UT_{pass} &= UT_1 + \frac{P}{\gamma} \quad \text{avec} \qquad \gamma = \gamma_A - \gamma_N \\ ZT_{pass} &= ZT_1 + \frac{P}{\gamma} \qquad \qquad \gamma_N = \frac{-V_f \cdot \sin R_f}{60 \cdot \cos \varphi_e} \\ \gamma_A &= 15 \, ^{\circ} / h (soleil) \\ P &= LHA_A \, si \, LHA_A < 180 \, ^{\circ} \\ P &= 360 \, ^{\circ} - LHA_A \, si \, LHA_A > 180 \, ^{\circ} \end{split}$$

MÉTHODOLOGIE DE RÉSOLUTION

Pour déterminer la latitude par la méridienne, il faut d'abord déterminer l'heure de passage au méridien.

- 1. Déterminer l'heure UT_1 à laquelle on a défini la position $UT_1 = ZT_1 + DZ$
- 2. Calculer LHA_A à UT₁ et en déduire P

LHA_A= GHA_A-G

$$P = LHA_A si LHA_A < 180^{\circ}$$

 $P = 360^{\circ} - LHA_A si LHA_A > 180^{\circ}$

3. Calculer γ_N et en déduire γ

$$\gamma_{N} = \frac{-V_{f} \cdot \sin R_{f}}{60 \cdot \cos \varphi_{e}} \qquad \gamma = \gamma_{A} - \gamma_{N}$$
$$\gamma_{A} = 15 \circ /h(soleil)$$

4. Calculer UT pass/ZT pass

$$UT_{pass} = UT_1 + \frac{P}{\gamma}$$

- 5. Mesurer la hauteur Ho à UT pass
- 6. Calculer la latitude

$$|\varphi| = (90 - h_o) \pm D$$

- Ajouter D si φ_e et D sont de même signe
- Retrancher D si φ_e et D sont de signe contraire.

$$|\varphi| = (90 - h_o) \pm D$$

