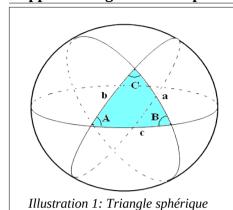
NAV-ORTHO	CALCUL ORTHODROMIQUE	V1.3 – 11/21
A. Charbonnel	ORTHODROMIE & TRIGONOMÉTRIE SPHÉRIQUE	1/4

RAPPELS DE TRIGONOMÉTRIE SPHÉRIQUE

Rappels de trigonométrie sphérique



$$\cos a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos A \quad (1)$$

$$\cos A = -\cos B \cdot \cos C + \sin B \cdot \sin C \cdot \cos a \quad (2)$$

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$$
 (3)

$$\sin(90-x) = \cos x \quad (4)$$

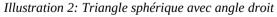
$$\cos(90-x) = \sin x \quad (5)$$

$$\cos b \cdot \cos C = \frac{\sin C}{\tan A} - \frac{\sin b}{\tan a}$$
 (6)

Le pentagone de Néper

Si dans le triangle sphérique un des angles est droit, les formules de trigonométrie se simplifient et aboutissent à une formulation qui peut être résumée ainsi.





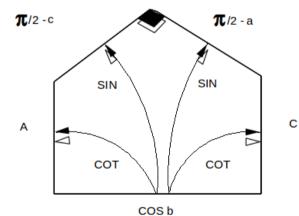


Illustration 3 : Pentagone de Néper

Le cosinus d'un des paramètres est égal au produit des sinus des côtés faces et au produit des cotangentes latérales à ce paramètre. Il faut remarquer que ceci est vrai <u>quel que soit le paramètre</u>

Par exemple:

$$\cos b = \cot a A \cdot \cot a C$$

$$\cos b = \sin(\frac{\pi}{2} - c) \cdot \sin(\frac{\pi}{2} - a)$$

NAV-ORTHO	CALCUL ORTHODROMIQUE	V1.3 – 11/21
A. Charbonnel	ORTHODROMIE & TRIGONOMÉTRIE SPHÉRIQUE	2/4

DÉMONSTRATION DES FORMULES DE L'ORTHODROMIE

La distance orthodromique

On applique la 1ere formule de trigo sphérique au triangle PDA

$$\cos a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos A$$

$$\cos d = \cos (90 - \phi_D) \cdot \cos (90 - \phi_A) + \sin (90 - \phi_D) \cdot \sin (90 - \phi_D) \cdot \cos g$$

$$\cos d = \sin \phi_D \cdot \sin \phi_A + \cos \phi_D \cdot \cos \phi_D \cdot \cos g$$

L'angle de route Ad

$$\cos a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos A$$

 $g = G_A - G_D$

$$\sin \phi_A = \sin \phi_D \cdot \cos d + \cos \phi_D \cdot \sin d \cdot \cos Ad$$

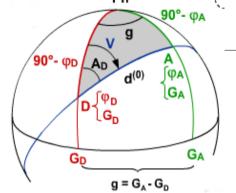


Illustration 4 : Triangle de positon

Latitude et longitude du vertex

On applique le pentagone de Néper sur le triangle sphérique PDV

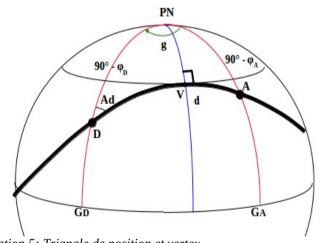


Illustration 5: *Triangle de position et vertex*

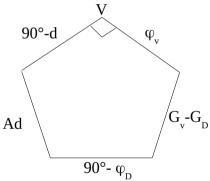


Illustration 6 : Néper et vertex

Latitude du vertex

$$\cos \phi_{v} = \sin Ad \sin(90 - \phi_{D}) \implies \boxed{\cos \phi_{v} = \sin Ad \cdot \cos \phi_{D}} \text{ si Ad < 90° } \phi_{v} \text{ est N; si Ad > 90° } \phi_{v} \text{ est S}$$

$$=> \boxed{|\phi_{v}| = \arccos(\sin Ad \cdot \cos \phi_{D})}$$

$$\cos \phi_{v} = \sin Ad \cdot \cos \phi_{D}$$

Longitude du vertex

$$\frac{cos(G_V - G_D) = cotan\phi_v \cdot cotan(90 - \phi_D)}{cotan(90 - \phi_D)} = \frac{cotan(90 - \phi_D)}{tan\phi_v}$$

Or
$$cotan(90-x) = tan x$$

$$\cos(G_V - G_D) = \frac{\tan \phi_D}{\tan \phi_V}$$

$$|G_V - G_D| = arcos(\frac{\tan \phi_D}{\tan \phi_V})$$

$$\frac{\cos(G_V - G_D) = \frac{\tan \phi_D}{\tan \phi_V}}{\cos(G_V - G_D) = \frac{\tan \phi_D}{\tan \phi_V}} \stackrel{\text{<=>}}{=} \frac{|G_V - G_D| = \arccos(\frac{\tan \phi_D}{\tan \phi_V})}{|G_V - G_D| = \arccos(\frac{\tan \phi_D}{\tan \phi_V})} \stackrel{\text{=>}}{=} \frac{|G_V - G_D| = \arccos(\frac{\tan \phi_D}{\tan \phi_V})}{|G_V - G_D| = \arccos(\frac{\tan \phi_D}{\tan \phi_V})}$$

NAV-ORTHO	CALCUL ORTHODROMIQUE	V1.3 – 11/21
A. Charbonnel	ORTHODROMIE & TRIGONOMÉTRIE SPHÉRIQUE	3/4

Le parcours mixte

Dans un parcours mixte, on ne veut pas dépasser une certaine latitude maximale (pour éviter les dangers dus aux glaces ou perte de la couverture Inmarsat par exemple

On a donc le schéma $\phi_{V_1} = \phi_{v_2} = \phi_{max}$ ou les point V_1 et V_2 délimite la route orthodromique de la route loxodromique conformément au graphique ci après.

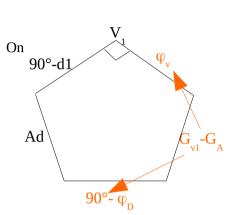


Illustration 8 : Néper & longitude

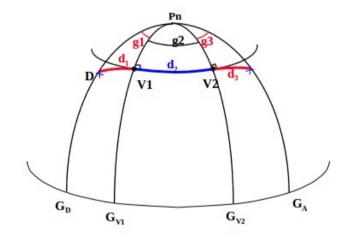


Illustration 7 : Triangles de position et route mixte

On prend le triangle $D \hat{P_n} V_1$

De même que précédemment pour le verte, on obtient la longitude du point V₁

$$\cos(G_{V1} - G_D) = \cot \alpha \phi_{V1} \cdot \cot \alpha (90 - \phi_D) = \frac{\cot \alpha (90 \circ - \phi_D)}{\tan \phi_{V1}} = \frac{\tan \phi_D}{\tan \phi_{V1}}$$

On obtient ainsi la longitude du point V_1 . On ferrait de même dans le triangle DP_nV_2 pour obtenir la longitude du point V_2 . D'où

$$|G_{V1} - G_D| = \arccos\left(\frac{\tan \phi_D}{\tan \phi_{V1}}\right)$$

NAV-ORTHO	CALCUL ORTHODROMIQUE	V1.3 – 11/21
A. Charbonnel	ORTHODROMIE & TRIGONOMÉTRIE SPHÉRIQUE	4/4

SOURCES

Illustrations

ILLUSTRATION	SOURCES	
Illustration 1: Triangle sphérique	Wikimedia – triangle sphérique https://commons.wikimedia.org/wiki/File:Triangle_sph%C3%A9rique.svg	
Illustration 2: Triangle sphérique avec angle droit	2001 - polycopié Université Paul Sabatier / deugSM U03 – astrophysique	
11Illustration 3 : Pentagone de Néper	consulté le 15/10/16 sur webast.ast.obs-mip.fr/users/ablancha/fac/03/SMA10/COUDEUG.doc	
Illustration 4 : Triangle de positon	Baudu & Hayot — <i>Diaporama Orthodromie</i> — 2006 - ENMM Marseille consulté en ligne le 01/11/2016 http://dept.navigation.enmm.free.fr/orthodromie.swf	
Illustration 5: Triangle de position et vertex	H. Martin – Diaporama Orthodromie – 2016 - ENSM	
Illustration 7 : Triangles de position et route mixte	H. Martin – Diaporama Orthodromie – 2016 - ENSM	
Illustration 8 : Néper & longitude	A. Charbonnel – figure libre de droit	

